| : | robynirawan.tjia@unpar.ac.id | |
| Jabatan Struktural | : | Asisten Ahli |
| Pendidikan | : | M.Sc in Statistics with specialization in Biostatistics (2020) di Hasselt University, Belgium B.Sc in Mathematics (2016) di Universitas Katolik Parahyangan, Indonesia |
Minat Penelitian
- Regression Models
- Bayesian Inference Statistics
- Biostatistics
Penelitian Terkini
- Estimating Relative Risk of Dengue in Bandung using Bayesian Inference through Integrated Nested Laplace Approximation
- Detection of Fake News Using Convolutional Neural Network (CNN), Long Short-term Memory (LSTM), and Hybrid Model of CNN-LSTM
- Longitudinal Data Analysis on the Sustainability of Countries’ Economic Gross Domestic Product
- Predicting the Social Health Insurance Premium Price for COVID-19 Cases by Epidemiology Model
- Application of Survival Dynamical System on Disease Transmission
Publikasi Terpilih
- Bayesian Additive Regression Tree Application for Predicting Maternity Recovery Rate of Group Long-Term Disability Insurance
S Budiana, F Kusnadi, R Irawan
BAREKENG: Jurnal Ilmu Matematika dan Terapan 17 (1), 0135-0146 - Bayesian Poisson-gamma and Log-normal models for estimating the relative risks of health insurance claims due to dengue disease in Bandung
B Yong, F Kristiani, R Irawan, Marcellus
Journal of Statistics and Management Systems 23 (8), 1497-1512 - Non-Spatial Analysis of Relative Risk of Dengue Disease in Bandung Using Poisson-gamma and Log-normal Models: A Case Study of Dengue Data from Santo Borromeus Hospital in 2013
R Irawan, B Yong, F Kristiani
Journal of Physics: Conference Series 812 (1), 012034
Topik Skripsi yang Ditawarkan
- Analisis prediktif
- Model survival
- Analisis data longitudinal
- Model inferensi Bayesian
- Statistika multivariat
Judul Skripsi yang Pernah Dibimbing
- Penerapan dan Perbandingan Performa Pembelajaran Mesin Multi-Output Untuk Luaran Numerik-Numerik dan Numerik-Kategorik
- Pendeteksian Berita Palsu dengan Menggunakan Model Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), dan CNN-LSTM
- Penerapan Model Support Vector Machine, Light Gradient Boosting Machine, Adaptive Boosting, dan Model Hybrid AdaBoost-SVM pada Data Churn Pelanggan
- Penerapan Metode Regresi Kuantil dengan Koefisien Tak Konstan Pada Volume Otak untuk Indikasi Penyakit Demensia
- Penerapan Linear Mixed Model pada Data Longitudinal: Indeks Pembangunan Manusia
- Prediksi Indikator Saham Menggunakan ARIMA-X dan Long Short-Term Memory (LSTM)
- Analisis Prediksi Peluang Mortalitas Penduduk Indonesia dan Filipina dengan Menggunakan Model Inferensi Bayesian
- Analisis Performa Model ResNet-50 yang Disesuaikan untuk Pengenalan Sidik Jari dan Modifikasinya





